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Abstract

The steady-periodic regime of laminar mixed convection in an inclined channel is studied analytically, with the
following boundary conditions: the temperature of one channel wall is stationary, while the temperature of the other
wall is a sinusoidal function of time. Analytical expressions of the velocity field, of the temperature field, of the pressure
drop, of the friction factors, as well as of the Nusselt number at any plane parallel to the walls are determined. It is
found that, for every value of the Prandtl number greater than 0.277, there exists a resonance frequency which max-
imizes the amplitude of the friction factor oscillations at the unsteady-temperature wall. Moreover, for any plane which
lies between the midplane of the channel and the unsteady-temperature wall, every value of the Prandtl number yields a
resonance frequency which maximizes the amplitude of the Nusselt number oscillations.
© 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Laminar flow; Unsteady mixed convection; Inclined duct; Analytical methods

1. Introduction

Many analytical studies on fully developed laminar mixed convection in either vertical or inclined channels are
available in the literature. These studies refer to steady flows, and provide analytical solutions for different boundary
conditions. The viscous dissipation in the fluid is either neglected [1-5] or considered [6-9]. On the other hand, nu-
merical methods have been employed to investigate the steady-periodic natural convection in a square enclosure with
both the upper and the lower wall insulated, and the left vertical wall kept at a constant temperature. Two boundary
conditions for the right vertical wall have been considered: a uniform temperature which varies in time with a sinusoidal
law [10,11], a uniform heat flux which varies periodically in time with square-wave pulses [12,13]. In Refs. [11-13], a
resonance phenomenon has been predicted: the heat flux through a vertical surface fluctuates with an amplitude that,
for fixed values of the other parameters, reaches a maximum for a given value of the angular frequency, called reso-
nance frequency. In Refs. [10,11], different results have been obtained concerning the time-averaged heat transfer across
the enclosure. In Ref. [10] this quantity has been found to be rather insensitive to the time-dependent boundary
conditions. On the other hand, the results obtained in Ref. [11] show that a large-amplitude wall temperature oscillation
causes an increase of the time-averaged heat transfer rate and that the increase is maximum at a resonance frequency.

In this paper, the time-periodic laminar mixed convection in an inclined channel is studied analytically with the
following boundary conditions: the temperature of one wall is constant, while that of the other wall is a sinusoidal
function of time. Thus, the results obtained in Refs. [1-5] are extended to the case of steady-periodic conditions.
Moreover, the numerical investigations presented in Refs. [10-13] are complemented by the analytical study of similar
phenomena in a simpler geometry. The results allow one to describe the oscillations of the dimensionless velocity, of the
dimensionless temperature, of the dimensionless pressure drop, of the friction factors, of the dimensionless heat flux
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Nomenclature

A, B functions defined by Eq. (9)

D hydraulic diameter, 4L

N Fanning friction factor at the wall Y = —L, defined in Eq. (21)
f Fanning friction factor at the wall ¥ = L, defined in Eq. (21)

Sl [, complex functions defined by Eq. (39)
Jfas o, complex functions defined by Eq. (40)

g gravitational acceleration

g magnitude of the gravitational acceleration

G dimensionless complex function defined by Eq. (32)
Gr Grashof number, defined in Eq. (11)

k thermal conductivity

L half of the channel width

Nu Nusselt number defined by Eq. (34)
Nu*, Nu;, Nuj, dimensionless complex functions defined by Eqgs. (35) and (36)
p pressure

P difference between the pressure and the hydrostatic pressure, p + 0,g(X cos ¢ — Y sin ¢)
Pr Prandtl number, defined in Eq. (11)

q heat flux per unit area

Re real part of a complex number

Re Reynolds number, defined in Eq. (11)

t time

T temperature

To average temperature in a channel section

T temperature of the wall ¥ = —L

T, time-averaged temperature of the wall ¥ =L
u dimensionless velocity defined in Eq. (11)

U velocity

U X-component of the fluid velocity

u*, u;, uy dimensionless complex functions defined by Eqgs. (23) and (24)

Uy average velocity in a channel section

X, Y rectangular coordinates

y dimensionless coordinate defined in Eq. (11)

Greek symbols

o thermal diffusivity

p volumetric coefficient of thermal expansion

r dimensionless complex parameter defined in Eq. (31)

AT amplitude of the temperature oscillations at ¥ = L

n dimensionless time, defined in Eq. (11)

0 dimensionless temperature, defined in Eq. (11)

0", 07, 0 dimensionless complex functions defined by Eqgs. (23) and (24)
A dimensionless pressure drop, defined in Eq. (11)

2%, A, A, dimensionless complex functions defined in Eqs. (23) and (24)

dynamic viscosity

kinematic viscosity

dimensionless parameter defined in Eq. (11)

mass density

mass density for 7 = T,

tilt angle

dimensionless parameter defined in Eq. (11)

angular frequency

dimensionless angular frequency, defined in Eq. (11)
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through any plane parallel to the walls. It is found that, for sufficiently high values of the Prandtl number, there exists a
resonance frequency which maximizes the oscillation amplitude of the friction factor at the unsteady-temperature wall.
Moreover, for every value of the Prandtl number, a resonance frequency for the oscillation amplitude of the dimen-
sionless heat flux exists for any plane which lies between the midplane of the channel and the unsteady-temperature
wall, while the time-averaged heat flux is independent of the temperature oscillations.

2. Mathematical model

Let us consider the laminar flow of a Newtonian fluid in the gap between two infinitely-wide plane parallel walls. The
flow is assumed to be parallel such that U has the only non-vanishing component U along the X-axis. The axis or-
thogonal to the walls, the gravitational acceleration g and the X-axis lie on the same plane. The latter condition ensures
that the flow can be considered as two-dimensional, i.e. both the velocity field and the temperature field depend only on
two spatial coordinates. The system under consideration is sketched in Fig. 1, where the chosen coordinate axes (X, Y)

are drawn. Let us assume that the wall at ¥ = —L is kept isothermal with a constant temperature 7}, while the wall at
Y = L is subjected to an oscillating temperature
T(X,L,t) =T, + AT cos(wt). (1)

Moreover, heat flow is assumed to occur only in the transverse direction, so that 07/0X = 0. The latter assumption is
conceivable since each wall is kept at a uniform temperature. The Boussinesq approximation is invoked, so that U is a
solenoidal field and, as a consequence, 0U/0X = 0. A steady mass flow rate is prescribed; therefore the average velocity
in a channel section, defined as

1 L
L%_QZ/;UdK (2)

is time independent.
The equation of state, ¢ = ¢(7) is considered as linear,

¢ = gll = B(T = To)], 3)

where Tj is an average temperature both with respect to the interval —L < Y < L and to the period 0 < ¢t < 2n/w, namely

w 2n/w L
Ty = — YT. 4
=g | dtLd @)

Obviously, since 07/0X = 0, the reference temperature 7j is a constant. According to the Boussinesq approximation,
the momentum balance equation yields, along the X and Y axes,

Fig. 1. Drawing of the channel and of the coordinate axes.
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oU *U
Qoe—t:Qogﬁ(T—To)COSQD—&+HW7 (5)

. oP
00gP(T — Tp)sinp + =0 (6)

where P = p + ¢,g(X cos ¢ — Y sin ). If both sides of Eq. (5) are derived with respect to X, one obtains

o’P
el ()
Moreover, if both sides of Eq. (6) are derived with respect to X, one obtains
o’P
axar = ®
It is easily verified that Egs. (8) and (9) imply the existence of two functions A4(Y,¢) and B(¢) such that
P(X,Y,t)=A4(Y,t) — B(t)X. 9)
The energy balance equation is given by
orT o’T
Let us define the dimensionless quantities
T-T, U Y DB oD? v U,D gBAT D cos ¢
= =— =— = I=—x, Q=— =—, Re=—"—"= == "7
H AT ) u UO ) y D ) ;/I wl? ‘L[UO ) V b o ) e V ) Gr vz b)
n-T . Ti—T
= = 11
1="3m = (11)
where D = 4L is the hydraulic diameter. By employing Egs. (9) and (11), Egs. (5) and (10) can be rewritten as
ou Gr %u
Q—=—0+1+— 12
oy Re _‘_A—‘_Gyz7 (12)
1 2
) "
on QP o?
The no slip condition at the walls implies that
u(=1/4,n) =0 =u(1/4,1), (14)
while the dimensionless thermal boundary conditions are
0(—1/4,n) = ¢, (15)
0(1/4,n) = &+ x + cosy. (16)
Egs. (2) and (4) imply the following constraints on the functions u(y,#) and 0(y,n):
1/4 1
—1/4
2 1/4
[ an [ avom—o. (18)
0 —1/4
Obviously, Eq. (17) yields the further constraint
V4 du(y, n)
——dy=0. 19
/4 /a4 O 4 (19)

On account of Eq. (19), an integration of Eq. (12) with respect to y in the range [-1/4, 1/4] yields
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L Gr V4
= -4 —
2 Re —1/4

du
dy

Ou

~ % 0(y,n)dy. (20)

y=—1/4 y=1/4

The friction factors f; and f> at the walls ¥ = —L and Y = L respectively are defined as

2v oU

B 2 Ou
U oY

7@6)/

2v oU

J[’Z:_Fgﬁ

2 Qu

Y Re Oy

(21)

s .
Y=-L y=—1/4 Y=L y=1/4

On account of Eq. (20), the friction factors and the parameter A are related as follows:
1/4

(i + fo)Re = A+ 2% 0(y,n)dy. (22)
€ J-1/4

3. Analytical solution, for steady periodic regime

Since Eqgs. (12)—(18) are linear, one can define the complex valued functions u*(y, 1), 0" (y,n), 2" (n), which fulfil the
equations

ou*  Gr %ut
QM _ Gl e OW
o Ree + A+ e
00" 1 0%0"
oy QP o’

u'(=1/4,n) =0=u'(1/4,1),
0 (=1/4,n)=¢, 0°(1/4,n) = E+y+e",

1/4 1
/ u*( 7’1)dy:§7

1/4

(23)

2n 1/4
/ dy dy 0" (y,n) =0,
0 —1/4

1

and are such that u = Ze(u*), 0 = Re(07), L = Re(A7). In steady-periodic regime, a solution of Eq. (23) can be written
in the form

* * Gr * i
u ()/7 ’1) = Ma(y) +_ub(y)e”7

Re
0" (v,n) = 0,(0) + O, (v)e", (24)
Gr ., -
;L* _ )L* T ax 1)1.
(;7) a + Re /Lbe

Due to the linearity of Eq. (23), if one substitutes Eq. (24) into Eq. (23) one obtains two distinct boundary value
problems. The first is given by

du: Gro

®ﬂ+ﬁé%+i“_Q

2

d%:m

dy

uy(—1/4) =0 = (1/4), (25)
0,(=1/4)=¢, 0,(1/4) =<+,
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while the second is given by

d*u v

a2 —iQuy + 0y + A, =0,

Ly

2

(1192 iQPro; =0,

. 26

uy(~1/4) = 0 = uy(1/4), 26)
Oy(=1/4) =0, 0,(1/4) =1,

1/4
[ wmar=o
—1/4

The differential equations and the boundary conditions which appear in Eq. (25) yield the distributions u;(y) and 6, (y)

as functions of the unknown parameters A, and &. Then, these parameters can be determined by employing the integral

constraints on «}(y) and 0, (y) given in Eq. (25). For instance, the constraint on ¢, () yields ¢ = —y/2 which, on account

of Eq. (11), implies 7y = (7} + T»)/2. The solution of Eq. (25) is as follows:
0,(v) =2y, 4, =48,

27

i) =g 1= 167 (124 1) 27

With reference to Eq. (26), the differential equations and the boundary conditions yield the distributions u; (y) and 0; ()
as functions of the unknown parameter ;. The latter parameter is determined by means of the integral constraint which
appears in Eq. (26), so that the solution of this equation is given by

00 = =1 {exp | (542 ] —exo | (5-2)r] (28)
sl st e ()]

x {4\/ﬁ+r—exp(%ﬁ)(4\/ﬁ—rﬂl. (29)
W) = % exp { - (2 + \/L_P;)yr} (e 1) {exp (\/%) - 1} " 6). (30)

In Egs. (28)—(30), the parameter I' is defined as
=iQPpr, (31)

while the function G(y) is given by

G(y) = exp {¥+ (3+ﬁ)yl"} —exp {IZ:Jr (1+\/Lﬁ)yl“} +exp{£+\/L_+( +\/%>yl"}
—exp [%Tr-l-\/%—i— <3+\/%>y1“} + 25(Pr—1)(1 —¢") exp KZ#—\/%))/F} —Ap(Pr—1)

1+8(1++ 1 1+2v V
X exp —+ E‘ +_ ) } — Jy(Pr—1)exp SR Vi)Y ( +Pr_ Pr)yr + Ao (Pr—1)exp {74 4Prpri ! r
V4 vV 1 24/ 1
2 P\;I;lyl"}—o—l;(Pr—l)exp (VP + >F_\;1*S; P ipr + Ay (Pr—1)exp {%4—2)/1"}

3 +8(VPr+1)yr
4P 4P

X exp [F+%+2yl"] [1—Jy(Pr—1)] exp {FJrﬁJrZ\/;%_ yl"} + [1 = 25(Pr = 1)]

X exp [% + 2y1"]. (32)

— Ji(Pr—1)exp {r+ 3L +2yF}+[/l§(Pr71)fl]exp + [Ag(Pr—1) —1]
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By employing Eq. (11), the heat flux per unit area can be written as

0T kAT 06
kT D o 33
In analogy with the literature [10-13], we will define a dimensionless heat flux per unit area, called Nusselt number, as
follows:

gD 00 _ [00" ,,
Nu=——=—=Re = Re(Nu* 34
u AT ay A’L( ay /?e( u ), ( )
where, on account of Eq. (24), Nu* is defined as
= %*% = Nu, + Nije'”. (35)

As a consequence of Eqs. (27) and (28), the quantities M, and Nuj employed in Eq. (35) are given by
Nu, =2y,

e ol (G ol (34

Eqs. (35) and (36) point out that the mean value in a period of the Nusselt number is given by N and depends only on
1 1.e., is independent of y, Q2 and Pr. On the contrary, the amplitude of the fluctuations of the Nusselt number is given
by the modulus of Nu; and depends on y and on the product QFr.

Finally, Egs. (21) and (24) allow one to express the quantities fiRe and fRe as

ou* Gr Ou’ . Gr )
fiRe =2Re| —2 44— e :,%e(f*aRe—i——f* Ree‘”), (37)
W ey Re | _ip ! Re’1®
ou* Gr Ou’ . Gr .
Re = —2Re| 2 — 0 M| = Rel frRe + — fr Ree" 38
JaRe ((ay w14 Re Oy y:l/4e ) ‘(fza 8+Ref2b ° )7 (%)

where f7 Re, fiRe, f,Re and f5, Re are given by

ou* Ou;
Si,Re =2—%2 . [iRe=2-2 , 39
1 ay 14 1b ay —1a ( )
ou* Ou;
SoRe= -2 . frRe=—-2-° . (40)
’ W lyoia * W lyoia
Egs. (27), (39) and (40) yield
fiRe =24 LG
a 12 Re 41
1 Gr (41)
fZaRe = 24+ 12 E
The expressions of f}, Re and f;. Re can be obtained from Eqgs. (30), (39) and (40), namely
2pPr 1\ T O r !
"Re=——— 24 —— )= |(ef =1 — | =1
fike= o | (24 7 )5 €07 o () -
dG(y) ( 1 )
X | —= — (24— |I'G(-1/4)], 42
[ ol =) r(-1/4) (42)
2P 1\ T - r -
sare =g |- (0 75 ) 1) -0 [ew (F5) -
dG(y) ( 1 )
X | — — (24— |I'G(1/4) (43)
[ dy i Pr
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4. Discussion of the results: pressure drop, friction factors and Nusselt number

As is shown by Eq. (27), the steady part A} of the complex pressure drop coefficient A" is a real constant and coincides
with the dimensionless pressure drop coefficient 4 obtained in the analysis of the steady case [1,5,9]. Moreover, Eqgs. (24)
and (29) show that the oscillating part is proportional to Gr/Re and to the complex quantity A;, which depends on Q
and Pr. Since the dimensionless pressure drop coefficient 4 coincides with the real part of 1%, the amplitude of the
oscillations of 1 is equal to |1;|Gr/Re. Plots of the modulus of 4; versus Q in the range 0 < 2 < 100 are reported in Fig. 2,
for Pr=10.7, 7 and 100. The figure shows that the amplitude of the fluctuations of the pressure drop coefficient 1 is a
decreasing function of Q, for every value of Pr, and that the decrease is faster for higher values of Pr. As it can be
inferred from Egs. (37) and (38), the amplitudes of the oscillations of the friction factors f; and f, are given by
|f;,Gr/Re| and |f5, Gr/Re|, respectively. The amplitude of the oscillations of fiRe?/Gr, i.e. |fj,Re|, is a decreasing
function of @ for every value of Pr, as is shown in Fig. 3, where the modulus of f}; Re is plotted versus @ for Pr = 0.7, 7
and 100, in the range 0 < 2 < 100. On the other hand, the amplitude of the oscillations of f,Re*/Gr, i.e. |f5; Re|, is not a
decreasing function of Q. For a given value of the Prandtl number there exists a value of Q which maximizes the
modulus of f3; Re and thus represents a resonance frequency for the oscillations of the friction factor at the wall ¥ = L.
This result is illustrated in Fig. 4, where the modulus of f;;, Re is plotted versus Q in the range 0 < Q < 100, for Pr = 0.7, 7
and 100. The figure shows that the resonance frequency is a decreasing function of Pr and reaches a very low value for
Pr =100. Indeed, the values of the resonance frequency for the plots reported in Fig. 4 are, with an accuracy of four
digits: Q = 63.92 for Pr=0.7, Q = 10.22 for Pr = 7, Q = 0.7440 for Pr = 100. Table 1 provides resonance values of Q
which correspond to some values of Pr ranging from 0.3 to 1000. This table shows that the resonance value of Q is not a
monotonic function of Pr in the range 0.3 <Pr<0.5. It is interesting to note that no resonance frequency exists if
Pr < 0.277. Indeed, if Pr < 0.277, |f5, Re| is a strictly decreasing function of Q.

The Nusselt number represents the dimensionless heat flux per unit area through a vertical plane and is defined for
every value of y. As is shown by Egs. (35) and (36), the Nusselt number is composed of a steady part, N, which is a
real constant, and an oscillating part whose amplitude is the modulus of the complex number Nu;;, which depends on y
and on the product QPr. The time-averaged value of the Nusselt number coincides with N, and is independent of y.

A

0 20 40 60 80 100
Q

Fig. 2. Plots of the modulus of A; versus Q in the range 0 < Q< 100, for Pr = 0.7, 7 and 100.

0.08
0.06
|f12Re|

0.04

0.02

0 20 40 60 80 100
Q

Fig. 3. Plots of the modulus of f}} Re versus  in the range 0 < Q< 100, for Pr= 0.7, 7 and 100.
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0.1
0.08|
0.06]

|75} kel
0.04

0.02]

0 20 40 60 80 100
Q

Fig. 4. Plots of the modulus of f5, Re versus Q in the range 0 < Q< 100, for Pr= 0.7, 7 and 100.

Table 1

Values of 2 which correspond to resonances of f>Re
Pr Q Pr Q
0.3 55.92 1.2 45.98
0.32 66.65 1.5 39.17
0.34 71.89 2.0 31.33
0.36 74.61 3.0 22.27
0.38 75.93 4.0 17.23
0.4 76.43 5.0 14.03
0.5 73.78 10.0 7.253
0.6 68.85 20.0 3.680
0.7 63.92 50.0 1.484
0.8 59.44 100.0 0.7440
0.9 55.45 500.0 0.1491
1.0 51.92 1000.0 0.07456

0 100

QPr 200 300 400

Fig. 5. Plots of the modulus of Nuj versus QPr in the range 0 < QPr <400, for y = —0.25, —0.05 and 0.

The modulus of Nuj at the steady-temperature wall (y = —0.25), at y = —0.05, and at the midplane of the channel
(y = 0) is plotted versus QPr in Fig. 5, in the range 0 < QP <400. As is illustrated by this figure, the amplitude of the
oscillations of the Nusselt number is a decreasing function of Q Pr in the whole interval —0.25 < y < 0. On the contrary,
in the open interval 0 < y < 0.25, for every value of y there exists a value of QP which maximizes the modulus of Nu,
i.e. there exists a resonance frequency for the fluctuations of the Nusselt number which is proportional to the inverse of
Pr. In this interval, the value of Q Pr which maximizes the modulus of Nu; is an increasing function of y. Finally, at the
right wall, the modulus of Nuj is an increasing function of QPr, and no resonance occurs. These phenomena are
illustrated in Figs. 6 and 7. In Fig. 6, plots of the modulus of Nu;, versus QPr are reported in the range 0 < QPr < 1200,
for y = 0.1, 0.17 and 0.2. For the plots reported in Fig. 6, the resonance frequencies correspond to QPr = 93.61, 312.7
and 800.0. In Fig. 7, plots of the modulus of Nu;j versus QPr are reported in the range 0 < QPr < 40,000, for y = 0.22,
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0 200 400 600 800 1000 1200
QPr

Fig. 6. Plots of the modulus of Nuj versus QPr in the range 0 < QPr <1200, for y = 0.1, 0.17 and 0.2.

200
150

«
|Nub

100

50

0 10000 20000 30000 40000
QPr

Fig. 7. Plots of the modulus of Nuj versus QPr in the range 0 < QPr < 40,000, for y = 0.22, 0.24 and 0.25.

Table 2

Values of the product Q Pr which correspond to resonances of Nu
y QPr y QPr
0.005 13.27 0.13 1353
0.01 30.40 0.14 162.6
0.015 38.75 0.15 199.3
0.02 44.60 0.16 247.3
0.025 49.19 0.17 312.7
0.03 53.03 0.18 408.1
0.04 59.40 0.19 555.6
0.06 69.82 0.2 800.0
0.08 80.16 0.21 1250.0
0.1 93.61 0.22 2222.2
0.11 103.2 0.23 5000.0
0.12 116.3 0.24 20000.0

0.24, and 0.25 (right wall). The first plot presents a resonance frequency for QPr = 2222, the second presents a reso-
nance frequency for QPr = 20,000, while the third presents no resonance. Table 2 provides resonance values of the
product QPr for the Nusselt number, in the open interval 0 < y < 0.25. This table shows that the resonance value of
Q Pr increases monotonically with y.

5. Discussion of the results: velocity and temperature distributions

The steady part u; of the dimensionless velocity is a real function of y which agrees with the dimensionless velocity
profile obtained in the analysis of the steady case [1,5,9].
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0.002
0.0015
MZ 0.001
0.0005
0
-0.2 -0.1 0 0.1 0.2
y

Fig. 8. Plots of the modulus of ] versus y with Q = 1, for Pr = 0.7 and 100.

The oscillating part is proportional to Gr/Re and to the complex function u;. Obviously, the modulus of (Gr/Re)u;,
coincides with the amplitude of the local dimensionless-velocity oscillations. Plots of |u} | versus y for Q = 1 are reported
in Fig. 8, for Pr = 0.7 and 100. The plot for Pr = 7 is not reported because, for Q < 1, it is indistinguishable from that
for Pr=0.7. The figure shows that, for Pr = 0.7, the amplitude of the dimensionless velocity oscillations is almost
exactly symmetric with respect to the midplane of the channel, is very close to zero at the midplane, and has two
maxima for y = —0.1443 and 0.1443. On the other hand, for Pr = 100, the amplitude of the dimensionless velocity
oscillations is not symmetric with respect to the midplane and differs appreciably from zero at this plane. Plots of the
modulus of u;, versus y for Q = 10 are reported in Fig. 9, for Pr = 0.7, 7 and 100. The plot for Pr = 0.7 in Fig. 9 is very
similar to that for the same value of Pr and Q = 1, reported in Fig. 8. The plot for P = 7 in Fig. 9 is similar to the plot
in Fig. 8 which refers to Q = 1 and Pr = 100. The plot for Pr = 100 presents an average value much lower than that of

0.002

0.0015

0.001

.
up

0.0005

-0.2 -0.1

< o

Fig. 9. Plots of the modulus of u; versus y with Q = 10, for Pr= 0.7, 7 and 100.

0.00175

0.0015

0.00125

0.001

.
Uy

0.00075

0.0005

0.00025

0

-0.2 -0.1 0 0.1 0.2
y

Fig. 10. Plots of the modulus of u;, versus y with Q = 100, for Pr = 0.7, 7 and 100.
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1
0.8
0.6
N
gb
0.4 QPr=10
0.2 QPr =100
Q Pr=1000
0

-0.2 -0.1 0 0.1 0.2
y

Fig. 11. Plots of the modulus of 6, versus y for QPr = 10, 100 and 1000.

the other plots of the figure, and an absolute maximum rather close to the oscillating-temperature wall (y = 0.1946).
Finally, plots of the modulus of u; versus y for = 100 are reported in Fig. 10, for Pr = 0.7, 7 and 100. The figure
shows that, for Q = 100, the amplitude of the dimensionless velocity oscillations is a strongly decreasing function of Pr
at any position, obviously except at the walls, where velocity oscillations cannot occur. In particular, for Pr = 100 the
amplitude of the velocity oscillations is very low throughout the channel.

As is shown by Eq. (27), the steady part ) of the dimensionless temperature is a real linear function of y, as in the
steady case [1,5,9]. The oscillating part is proportional to 6, which, as is shown by Eq. (28), is a complex function of y
and of the product QPr. Plots of the modulus of 6 versus y for QP = 10, 100 and 1000 are reported in Fig. 11. The
figure shows that, for QPr< 10, the amplitude of the temperature oscillations looks like a linear function of y. On the
other hand, when the value of Q Pr becomes higher and higher, the temperature oscillations tend to be sensible only in a
narrow region of the channel adjacent to the wall ¥ = L.

6. Conclusions

The steady-periodic mixed convection in an inclined parallel-plate channel has been investigated by an analytical
solution of the governing balance equations, under the following assumptions: the flow is laminar and parallel, the heat
flux is transverse to the flow. It has been pointed out that the latter assumption is compatible with the thermal boundary
conditions prescribed: both walls have a uniform temperature, which is stationary on one wall and sinusoidally time-
varying on the other wall. The temperature distribution has been evaluated by solving the energy balance equation; then
it has been substituted in the momentum balance equation. The solution of the latter equation has provided both the
velocity distribution and the streamwise pressure drop. It has been shown that four dimensionless parameters must be
fixed to determine the solution: the ratio between the Grashof number and the Reynolds number Gr/Re, the Prandtl
number Pr, the temperature difference ratio y and the dimensionless frequency Q.

The most interesting features of the solution are the following:

e The oscillation amplitude of the dimensionless local velocity can be expressed as |Gr/Re||u; |, where |u;]| is a function
of Pr, Q and of the position y. The oscillation amplitude of the dimensionless pressure drop is given by |Gr/Re||1;],
where |4;| is a function of Pr and Q. The oscillation amplitude of the dimensionless local temperature can be ex-
pressed as a function of the product QPr and of the position y. Since Q and Pr do not depend on the average fluid
velocity Uy, all the above mentioned amplitudes are independent of the mean flow direction (U, > 0 or U, < 0).

e For every value of Pr, the oscillation amplitudes of the dimensionless pressure drop / and of the friction factor fiRe
decrease monotonically with Q. On the other hand, if P > 0.277, the oscillation amplitude of the friction factor f>Re
is not a monotonic function of @ and a resonance frequency exists for any given value of Pr. If Pr < 0.277, the os-
cillation amplitude of the friction factor f>Re decreases monotonically with Q.

e The oscillation amplitude of dimensionless heat flux, i.e. of the Nusselt number Nu, depends on the dimensionless
coordinate y and on the product QPr. If —0.25 < y < 0, i.e. in the half-channel next to the steady-temperature wall,
the oscillation amplitude of Nu is a monotonically decreasing function of Q Pr. On the other hand, if 0 < y < 0.25,
i.e. in the half-channel next to the oscillating-temperature wall, the oscillation amplitude of Nu is not a monotonic
function of QPr, and a resonance value of Q Pr exists for any given y.
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